Predict Customer Satisfaction

Posted on Dim 23 septembre 2018 in Kaggle

Santander Customer Satisfaction

Data Science Competition on Kaggle : https://www.kaggle.com/c/santander-customer-satisfaction Final Result : Top 67%.

I used H2O Platform for this competition, H2O is an open source machine learning platform.

The goal is to predict if a customer is satisfied or dissatisfied with their banking experience.

In [1]:
import h2o
h2o.init()
/Users/comalada/anaconda/lib/python2.7/site-packages/IPython/core/formatters.py:92: DeprecationWarning: DisplayFormatter._ipython_display_formatter_default is deprecated: use @default decorator instead.
  def _ipython_display_formatter_default(self):
/Users/comalada/anaconda/lib/python2.7/site-packages/IPython/core/formatters.py:98: DeprecationWarning: DisplayFormatter._formatters_default is deprecated: use @default decorator instead.
  def _formatters_default(self):
/Users/comalada/anaconda/lib/python2.7/site-packages/IPython/core/formatters.py:677: DeprecationWarning: PlainTextFormatter._deferred_printers_default is deprecated: use @default decorator instead.
  def _deferred_printers_default(self):
/Users/comalada/anaconda/lib/python2.7/site-packages/IPython/core/formatters.py:669: DeprecationWarning: PlainTextFormatter._singleton_printers_default is deprecated: use @default decorator instead.
  def _singleton_printers_default(self):
/Users/comalada/anaconda/lib/python2.7/site-packages/IPython/core/formatters.py:672: DeprecationWarning: PlainTextFormatter._type_printers_default is deprecated: use @default decorator instead.
  def _type_printers_default(self):
/Users/comalada/anaconda/lib/python2.7/site-packages/IPython/core/formatters.py:669: DeprecationWarning: PlainTextFormatter._singleton_printers_default is deprecated: use @default decorator instead.
  def _singleton_printers_default(self):
/Users/comalada/anaconda/lib/python2.7/site-packages/IPython/core/formatters.py:672: DeprecationWarning: PlainTextFormatter._type_printers_default is deprecated: use @default decorator instead.
  def _type_printers_default(self):
/Users/comalada/anaconda/lib/python2.7/site-packages/IPython/core/formatters.py:677: DeprecationWarning: PlainTextFormatter._deferred_printers_default is deprecated: use @default decorator instead.
  def _deferred_printers_default(self):
H2O cluster uptime: 21 days 55 minutes 38 seconds 440 milliseconds
H2O cluster version: 3.8.1.4
H2O cluster name: H2O_started_from_python_comalada_kmk341
H2O cluster total nodes: 1
H2O cluster total free memory: 1.28 GB
H2O cluster total cores: 4
H2O cluster allowed cores: 4
H2O cluster healthy: True
H2O Connection ip: 127.0.0.1
H2O Connection port: 54321
H2O Connection proxy: None
Python Version: 2.7.11
In [2]:
df = h2o.import_file("/Users/comalada/Documents/h2o_ML/Kaggle-Santander_Customer_Satisfaction/train.csv")
Parse Progress: [##################################################] 100%
In [3]:
df.summary()
ID var3 var15 imp_ent_var16_ult1 imp_op_var39_comer_ult1 imp_op_var39_comer_ult3 imp_op_var40_comer_ult1 imp_op_var40_comer_ult3 imp_op_var40_efect_ult1 imp_op_var40_efect_ult3 imp_op_var40_ult1 imp_op_var41_comer_ult1 imp_op_var41_comer_ult3 imp_op_var41_efect_ult1 imp_op_var41_efect_ult3 imp_op_var41_ult1 imp_op_var39_efect_ult1 imp_op_var39_efect_ult3 imp_op_var39_ult1 imp_sal_var16_ult1 ind_var1_0 ind_var1 ind_var2_0 ind_var2 ind_var5_0 ind_var5 ind_var6_0 ind_var6 ind_var8_0 ind_var8 ind_var12_0 ind_var12 ind_var13_0 ind_var13_corto_0 ind_var13_corto ind_var13_largo_0 ind_var13_largo ind_var13_medio_0 ind_var13_medio ind_var13 ind_var14_0 ind_var14 ind_var17_0 ind_var17 ind_var18_0 ind_var18 ind_var19 ind_var20_0 ind_var20 ind_var24_0 ind_var24 ind_var25_cte ind_var26_0 ind_var26_cte ind_var26 ind_var25_0 ind_var25 ind_var27_0 ind_var28_0 ind_var28 ind_var27 ind_var29_0 ind_var29 ind_var30_0 ind_var30 ind_var31_0 ind_var31 ind_var32_cte ind_var32_0 ind_var32 ind_var33_0 ind_var33 ind_var34_0 ind_var34 ind_var37_cte ind_var37_0 ind_var37 ind_var39_0 ind_var40_0 ind_var40 ind_var41_0 ind_var41 ind_var39 ind_var44_0 ind_var44 ind_var46_0 ind_var46 num_var1_0 num_var1 num_var4 num_var5_0 num_var5 num_var6_0 num_var6 num_var8_0 num_var8 num_var12_0 num_var12 num_var13_0 num_var13_corto_0 num_var13_corto num_var13_largo_0 num_var13_largo num_var13_medio_0 num_var13_medio num_var13 num_var14_0 num_var14 num_var17_0 num_var17 num_var18_0 num_var18 num_var20_0 num_var20 num_var24_0 num_var24 num_var26_0 num_var26 num_var25_0 num_var25 num_op_var40_hace2 num_op_var40_hace3 num_op_var40_ult1 num_op_var40_ult3 num_op_var41_hace2 num_op_var41_hace3 num_op_var41_ult1 num_op_var41_ult3 num_op_var39_hace2 num_op_var39_hace3 num_op_var39_ult1 num_op_var39_ult3 num_var27_0 num_var28_0 num_var28 num_var27 num_var29_0 num_var29 num_var30_0 num_var30 num_var31_0 num_var31 num_var32_0 num_var32 num_var33_0 num_var33 num_var34_0 num_var34 num_var35 num_var37_med_ult2 num_var37_0 num_var37 num_var39_0 num_var40_0 num_var40 num_var41_0 num_var41 num_var39 num_var42_0 num_var42 num_var44_0 num_var44 num_var46_0 num_var46 saldo_var1 saldo_var5 saldo_var6 saldo_var8 saldo_var12 saldo_var13_corto saldo_var13_largo saldo_var13_medio saldo_var13 saldo_var14 saldo_var17 saldo_var18 saldo_var20 saldo_var24 saldo_var26 saldo_var25 saldo_var28 saldo_var27 saldo_var29 saldo_var30 saldo_var31 saldo_var32 saldo_var33 saldo_var34 saldo_var37 saldo_var40 saldo_var41 saldo_var42 saldo_var44 saldo_var46 var36 delta_imp_amort_var18_1y3 delta_imp_amort_var34_1y3 delta_imp_aport_var13_1y3 delta_imp_aport_var17_1y3 delta_imp_aport_var33_1y3 delta_imp_compra_var44_1y3 delta_imp_reemb_var13_1y3 delta_imp_reemb_var17_1y3 delta_imp_reemb_var33_1y3 delta_imp_trasp_var17_in_1y3 delta_imp_trasp_var17_out_1y3 delta_imp_trasp_var33_in_1y3 delta_imp_trasp_var33_out_1y3 delta_imp_venta_var44_1y3 delta_num_aport_var13_1y3 delta_num_aport_var17_1y3 delta_num_aport_var33_1y3 delta_num_compra_var44_1y3 delta_num_reemb_var13_1y3 delta_num_reemb_var17_1y3 delta_num_reemb_var33_1y3 delta_num_trasp_var17_in_1y3 delta_num_trasp_var17_out_1y3 delta_num_trasp_var33_in_1y3 delta_num_trasp_var33_out_1y3 delta_num_venta_var44_1y3 imp_amort_var18_hace3 imp_amort_var18_ult1 imp_amort_var34_hace3 imp_amort_var34_ult1 imp_aport_var13_hace3 imp_aport_var13_ult1 imp_aport_var17_hace3 imp_aport_var17_ult1 imp_aport_var33_hace3 imp_aport_var33_ult1 imp_var7_emit_ult1 imp_var7_recib_ult1 imp_compra_var44_hace3 imp_compra_var44_ult1 imp_reemb_var13_hace3 imp_reemb_var13_ult1 imp_reemb_var17_hace3 imp_reemb_var17_ult1 imp_reemb_var33_hace3 imp_reemb_var33_ult1 imp_var43_emit_ult1 imp_trans_var37_ult1 imp_trasp_var17_in_hace3 imp_trasp_var17_in_ult1 imp_trasp_var17_out_hace3 imp_trasp_var17_out_ult1 imp_trasp_var33_in_hace3 imp_trasp_var33_in_ult1 imp_trasp_var33_out_hace3 imp_trasp_var33_out_ult1 imp_venta_var44_hace3 imp_venta_var44_ult1 ind_var7_emit_ult1 ind_var7_recib_ult1 ind_var10_ult1 ind_var10cte_ult1 ind_var9_cte_ult1 ind_var9_ult1 ind_var43_emit_ult1 ind_var43_recib_ult1 var21 num_var2_0_ult1 num_var2_ult1 num_aport_var13_hace3 num_aport_var13_ult1 num_aport_var17_hace3 num_aport_var17_ult1 num_aport_var33_hace3 num_aport_var33_ult1 num_var7_emit_ult1 num_var7_recib_ult1 num_compra_var44_hace3 num_compra_var44_ult1 num_ent_var16_ult1 num_var22_hace2 num_var22_hace3 num_var22_ult1 num_var22_ult3 num_med_var22_ult3 num_med_var45_ult3 num_meses_var5_ult3 num_meses_var8_ult3 num_meses_var12_ult3 num_meses_var13_corto_ult3 num_meses_var13_largo_ult3 num_meses_var13_medio_ult3 num_meses_var17_ult3 num_meses_var29_ult3 num_meses_var33_ult3 num_meses_var39_vig_ult3 num_meses_var44_ult3 num_op_var39_comer_ult1 num_op_var39_comer_ult3 num_op_var40_comer_ult1 num_op_var40_comer_ult3 num_op_var40_efect_ult1 num_op_var40_efect_ult3 num_op_var41_comer_ult1 num_op_var41_comer_ult3 num_op_var41_efect_ult1 num_op_var41_efect_ult3 num_op_var39_efect_ult1 num_op_var39_efect_ult3 num_reemb_var13_hace3 num_reemb_var13_ult1 num_reemb_var17_hace3 num_reemb_var17_ult1 num_reemb_var33_hace3 num_reemb_var33_ult1 num_sal_var16_ult1 num_var43_emit_ult1 num_var43_recib_ult1 num_trasp_var11_ult1 num_trasp_var17_in_hace3 num_trasp_var17_in_ult1 num_trasp_var17_out_hace3 num_trasp_var17_out_ult1 num_trasp_var33_in_hace3 num_trasp_var33_in_ult1 num_trasp_var33_out_hace3 num_trasp_var33_out_ult1 num_venta_var44_hace3 num_venta_var44_ult1 num_var45_hace2 num_var45_hace3 num_var45_ult1 num_var45_ult3 saldo_var2_ult1 saldo_medio_var5_hace2 saldo_medio_var5_hace3 saldo_medio_var5_ult1 saldo_medio_var5_ult3 saldo_medio_var8_hace2 saldo_medio_var8_hace3 saldo_medio_var8_ult1 saldo_medio_var8_ult3 saldo_medio_var12_hace2 saldo_medio_var12_hace3 saldo_medio_var12_ult1 saldo_medio_var12_ult3 saldo_medio_var13_corto_hace2 saldo_medio_var13_corto_hace3 saldo_medio_var13_corto_ult1 saldo_medio_var13_corto_ult3 saldo_medio_var13_largo_hace2 saldo_medio_var13_largo_hace3 saldo_medio_var13_largo_ult1 saldo_medio_var13_largo_ult3 saldo_medio_var13_medio_hace2 saldo_medio_var13_medio_hace3 saldo_medio_var13_medio_ult1 saldo_medio_var13_medio_ult3 saldo_medio_var17_hace2 saldo_medio_var17_hace3 saldo_medio_var17_ult1 saldo_medio_var17_ult3 saldo_medio_var29_hace2 saldo_medio_var29_hace3 saldo_medio_var29_ult1 saldo_medio_var29_ult3 saldo_medio_var33_hace2 saldo_medio_var33_hace3 saldo_medio_var33_ult1 saldo_medio_var33_ult3 saldo_medio_var44_hace2 saldo_medio_var44_hace3 saldo_medio_var44_ult1 saldo_medio_var44_ult3 var38 TARGET
type int int int real real real real real real real real real real real real real real real real real int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int real real real real real real real int real real real int real real real real int int real real real real real int real real int real real int int int int real real real real int int int int int int int real real real real real int int int int int int int real int real int real real real real real int int real real real real int real real real int int real real real real int real real real int int real real int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int real real real real real real real real real real real real real real real real real real real real real int int real real real real real real real real real real real real real real real real real real int
mins 1.0 -999999.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.9 -2895.72 0.0 -4942.26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -4942.26 0.0 0.0 0.0 0.0 0.0 -0.9 0.0 -4942.26 0.0 0.0 0.0 0.0 0.0 -1.0 -1.0 -1.0 -1.0 0.0 -1.0 0.0 -1.0 0.0 -1.0 0.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0 -1.0 0.0 -1.0 0.0 -1.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -128.37 -8.04 -922.38 -476.07 -287.67 0.0 -3401.34 -1844.52 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5163.75 0.0
mean 75964.0507235-1523.1992765133.212865035586.2082651934 72.3630670876 119.529632202 3.55912983425 6.47269771113 0.412946329913 0.567352407261 3.16071546961 68.8039372534 113.056934491 68.2051404893 113.225057616 137.24276322 68.6180868193 113.792410024 140.40347869 5.47767561168 0.01145751118130.003762167850570.0 0.0 0.9580242041570.6637595369640.0001052354643512.63088660879e-050.03283346487770.02859773743750.06752170481450.04546172059980.05224940805050.0429360694554 0.0414759273875 0.010168376743 0.00999736911339 2.63088660879e-05 2.63088660879e-050.05085503814790.0236516706130.005301236516710.001802157327020.001446987634832.63088660879e-052.63088660879e-050.004196264141020.003630623520130.002696658774010.04237042883450.03788476716650.02642725598530.02463825309130.027558537227 0.02463825309130.02363851618 0.02363851618 0.0 0.0 0.0 0.0 0.0001052354643512.63088660879e-050.995488029466 0.7328334648780.004275190739280.003670086819260.001210207840040.00107866350960.00107866350960.0007498026835040.0006314127861092.63088660879e-052.63088660879e-050.07229676400950.0652591423310.0652591423310.8807550644570.01141804788210.003722704551430.8792817679560.0 0.003722704551430.001881083925280.001696921862670.0 0.0 0.03445146014210.01132596685081.07943962115 2.89404104183 1.999171270720.0003157063930547.89265982636e-050.09853985793210.08579321231250.2112470402530.1380031570640.16771902131 0.130307813733 0.124506708761 0.0373322809787 0.0352407261247 7.89265982636e-05 7.89265982636e-050.1598263614840.07269139700080.01614048934490.01187845303870.008879242304667.89265982636e-057.89265982636e-050.01089187056040.008089976322020.1276637726910.1137726913970.08938437253350.08938437253350.08516179952640.08516179952640.0202446724546 0.00102604577743 0.0570244672455 0.0782951854775 1.60114443567 0.0939226519337 2.85883977901 4.55390686661 1.62138910813 0.0949486977111 2.91586424625 4.63220205209 0.0 0.0 0.0 0.0 0.0003157063930547.89265982636e-053.371862667722.382872928180.02012628255720.01606156274660.00422257300710.00422257300710.002565114443570.002091554853997.89265982636e-057.89265982636e-053.299368587210.263535911602 0.4187845303870.4187845303872.724940805050.03429360694550.01116811365432.699250197320.0 0.01116811365433.20414364641 2.2179952644 0.005682715074980.0050907655880.0 0.0 48.44910694551028.4682352 0.414475138122141.2267841366021.615900954993.75297001 1493.68226993 0.513022888713 6487.9482628369.0962004736183.40589660643.409629045 27.39945580115925.1202446776.081633386 72.73569258090.0 0.0 0.41447513812213679.6736582292.2909672453.3459408050512.53233267560.67087608524136.90719376484.368601815310.0 7191.7253954296.35273796370.0 40.4490791897263088.660852 263088.660852 48671402.2359 5130228.88643 131544.330141 9208103.12972 4998684.5562 2630886.60851 131544.330426 526177.321679 526177.321705 657721.652052 131544.330426 5524861.87795 48671402.2357 5130228.88643 131544.330196 9208103.12977 4998684.5562 2630886.60851 131544.330426 526177.321679 526177.321705 657721.652052 131544.330426 5524861.87799 0.0 0.231189423836 0.0 0.0180513022889 2823.94908919 619.585009866 98.7887691397 31.1053228098 2.98579321231 0.0481452249408 2.72145382794 127.698209945 13.9645805051 116.782528019 0.0 46.1802430939 0.158210339384 12.5694005525 0.0 0.0157853196527 854.12074704 1932.95443173 1.87480820837 2.51267837411 0.0 1.9136160221 2.78977229676 0.314701262826 0.0 0.0394632991318 3.78713693765 81.43382794 3.94632991318e-05 0.00269665877401 0.0808734543541 0.0921599579058 0.0968692449355 0.08591160220990.0665877400684 0.129308076822 32.54932912390.0 0.0 0.0758879242305 0.017955801105 0.00153906866614 0.00339384372534 0.00106550907656 0.000315706393054 0.000118389897395 0.0102999210734 0.00185477505919 0.00753749013418 0.187963693765 1.29869771113 1.18488555643 0.560655090766 3.04423835833 0.635872138911 4.02466456196 1.97997895291 0.053604314654 0.102052091555 0.0989213364904 0.0174033149171 5.26177321757e-05 0.00295974743489 0.000105235464351 0.00151275980005 1.59279137069 0.00357800578795 2.19479084451 3.60706393054 0.0749802683504 0.144830307814 0.0024861878453 0.00367008681926 2.11981057616 3.46223362273 0.719415943173 1.21215469613 0.721902131018 1.21582478295 0.0 0.00149960536701 3.94632991318e-05 0.00118389897395 0.0 3.94632991318e-05 0.00493291239148 0.392817679558 0.81499605367 0.120678768745 0.000118389897395 0.000157853196527 0.0 0.000157853196527 0.000236779794791 0.000236779794791 0.0 3.94632991318e-05 0.000157853196527 0.00441988950276 5.39321231255 3.89439621152 4.3634964483 13.6511049724 0.0 1579.13531137 891.365863457 1077.25675572 1048.85644712 68.2754518548 9.50528689818 124.620961721 110.026575375 3997.02332794 613.534443173 5703.00817245 4401.00243923 3639.41993923 556.184177979 4852.26181373 3857.84854223 771.227449092 162.170438832 956.950207182 750.956273086 0.175324388319 0.0 0.513022888713 0.344174033149 91.1718105762 36.4631835043 131.031565904 109.216943567 0.213071033938 0.00191002367798 0.253906866614 0.186629834254 7.93582399369 1.36514601421 12.2155797159 8.784074191 31.5053243883 1.85857498027 76.0261653512 56.6143512234 117235.80943 0.0395685345962
maxs 151838.0 238.0 105.0 210000.0 12888.03 21024.81 8237.82 11073.57 6600.0 6600.0 8237.82 12888.03 16566.81 45990.0 131100.0 47598.09 45990.0 131100.0 47598.09 105000.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 6.0 6.0 7.0 15.0 15.0 3.0 3.0 6.0 3.0 111.0 15.0 18.0 6.0 6.0 18.0 18.0 3.0 3.0 18.0 111.0 12.0 36.0 27.0 3.0 3.0 3.0 3.0 9.0 6.0 33.0 33.0 33.0 33.0 117.0 48.0 234.0 351.0 249.0 81.0 468.0 468.0 249.0 81.0 468.0 468.0 0.0 0.0 0.0 0.0 3.0 3.0 114.0 33.0 36.0 27.0 12.0 12.0 12.0 6.0 3.0 3.0 36.0 105.0 114.0 114.0 33.0 6.0 3.0 33.0 0.0 3.0 114.0 18.0 6.0 3.0 0.0 0.0 3000000.0 619329.15 19531.8 240045.0 3008077.32 450000.0 1500000.0 30000.0 1500000.0 450000.0 6119500.14 3000000.0 455858.16 3008077.32 69756.72 69756.72 0.0 0.0 19531.8 3458077.32 6119500.14 12210.78 142078.8 36000.0 60000.0 8192.61 0.0 3008077.32 740006.61 0.0 99.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 0.0 15691.8 0.0 1096.02 840000.0 450000.0 6083691.87 432457.32 36000.0 1260.0 145384.92 1039260.0 210001.35 3410058.66 0.0 450000.0 12027.15 182132.97 0.0 1200.0 1155003.0 2310003.0 96781.44 133730.58 0.0 69622.29 49581.27 13207.32 0.0 3000.0 209834.4 2754476.46 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 30000.0 0.0 0.0 24.0 30.0 12.0 21.0 12.0 6.0 3.0 24.0 9.0 39.0 60.0 123.0 108.0 96.0 234.0 78.0 267.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 2.0 3.0 3.0 3.0 438.0 600.0 210.0 582.0 24.0 24.0 438.0 438.0 90.0 156.0 90.0 156.0 0.0 3.0 3.0 21.0 0.0 3.0 15.0 180.0 264.0 93.0 6.0 3.0 0.0 3.0 3.0 6.0 0.0 3.0 6.0 39.0 342.0 339.0 510.0 801.0 0.0 812137.26 1542339.36 601428.6 544365.57 231351.99 77586.21 228031.8 177582.0 3000538.14 668335.32 3004185.6 2272859.43 450000.0 304838.7 450000.0 450000.0 840000.0 534000.0 1500000.0 1034482.74 7741.95 0.0 30000.0 18870.99 4210084.23 2368558.95 3998687.46 3525776.88 10430.01 145.2 13793.67 7331.34 50003.88 20385.72 138831.63 91778.73 438329.22 24650.01 681462.9 397884.3 22034738.76 1.0
sigma 43781.947379539033.4623639 12.95648581641614.75731272 339.315830907 546.266294057 93.155748706 153.737065555 30.6048637661 36.5135132146 95.2682043651 319.605516194 512.154822602 531.89791718 950.086397947 697.712596074 535.47374963 953.578623993 712.767239685 465.391148614 0.106425493238 0.0612214280075 0.0 0.0 0.2005351774720.4724253908660.010257961495 0.00512918317133 0.178201700867 0.166674150019 0.250924993655 0.208315922107 0.222531028886 0.202714340765 0.199389562929 0.100325038043 0.0994864408896 0.00512918317133 0.00512918317133 0.219703068253 0.1519624060740.0726168215642 0.0424138328843 0.0380120095316 0.00512918317133 0.00512918317133 0.0646429460718 0.0601455707347 0.0518596392514 0.20143413153 0.190918807513 0.160403224965 0.155021049206 0.163705274149 0.155021049206 0.1519211648770.1519211648770.0 0.0 0.0 0.0 0.010257961495 0.00512918317133 0.06701993540260.4424829410890.0652454556382 0.0604703678123 0.0347672135433 0.03282551094380.03282551094380.027372437513 0.0251201593296 0.00512918317133 0.00512918317133 0.258980354857 0.2469841879740.2469841879740.32407863623 0.106244174191 0.0609006963069 0.3258016832310.0 0.0609006963069 0.0433309375264 0.0411590160635 0.0 0.0 0.320378506009 0.184626247363 0.9095657237440.6564789677141.431901529680.0307738844851 0.015387549514 0.534929915158 0.500022450058 0.8902359673820.6372586540680.7458218155770.618826295918 0.598745756698 0.404821878509 0.381372635808 0.015387549514 0.015387549514 0.7130222010220.610815013511 0.224260188983 0.362480077721 0.288768304407 0.015387549514 0.015387549514 0.180436712204 0.155578917754 0.6084815909830.5736623721670.628596239515 0.628596239515 0.61210963526 0.61210963526 0.897617715601 0.180762243658 1.82737355508 2.55821597517 7.32200421698 1.21521783802 10.8863135253 16.8918007064 7.38953858771 1.22850992758 11.1128987607 17.1759000186 0.0 0.0 0.0 0.0 0.0307738844851 0.015387549514 1.3366536576 1.642786562150.406623860708 0.331608906994 0.139702396828 0.139702396828 0.101456772402 0.0863382128094 0.015387549514 0.015387549514 2.868216626891.65027340997 2.24114087533 2.24114087533 1.139158601480.319284967004 0.182702088921 1.105296729180.0 0.182702088921 0.9441228089841.497703343930.131350137878 0.1234770481910.0 0.0 10937.47301919852.1400725383.0967969865 2515.6563021348144.713969832619.1342451 20016.4891485 113.597558837 38416.75396742839.6189644622698.129955110934.96615882477.8107436448008.5293417739.776626037726.8826687780.0 0.0 83.0967969865 63014.078142423316.398822 126.68015248 797.839556706141.448597643 472.098862948113.9687563240.0 49145.31387855218.428364850.0 47.362719151151291831.7082 51291831.7082 695953653.99 226443467.841 36269040.5736 303310817.974 223522965.125 162179809.193 36269040.5736 72536649.8183 72536649.8183 81097906.4951 36269040.5736 234986852.924 695953653.99 226443467.841 36269040.5736 303310817.974 223522965.125 162179809.193 36269040.5736 72536649.8183 72536649.8183 81097906.4951 36269040.5736 234986852.924 0.0 57.3209584955 0.0 4.09946129459 25334.4681064 11252.9950893 22120.7191637 2457.09128231 226.862983666 6.02269240022 554.249436523 6368.99673096 1151.51086171 13620.4421717 0.0 2859.73659099 43.6213191379 1093.13388273 0.0 4.35228486927 14255.8880999 25355.7174292 388.245021796 508.968830644 0.0 357.405329676 323.814261031 53.4080845993 0.0 10.8807121732 811.976086466 11282.413386 0.00628189946461 0.0518596392514 0.272642470198 0.289253523167 0.295781583537 0.28023531515 0.249308304214 0.33554281267 393.83493949 0.0 0.0 0.552499139252 0.288756547088 0.104919190475 0.174059455629 0.0696628618487 0.0344066109322 0.0188456983938 0.228782264812 0.0991113036437 0.315452688933 0.995016369119 3.45026751156 3.26333316843 2.10441008449 6.20611585538 1.83526701335 10.9303336867 1.29892400358 0.334908300685 0.487687358511 0.486063980031 0.213094760124 0.0102583663427 0.0776479489301 0.0135703135758 0.0624870349354 0.719654609397 0.088174398261 9.13140565962 14.9197256574 2.08940833212 4.28814467733 0.147171515624 0.20206826119 8.7994942845 14.1406503288 3.21099927522 5.16039625794 3.22631441994 5.18109154866 0.0 0.0670568895442 0.0108807121732 0.0985225743459 0.0 0.0108807121732 0.154948802426 2.21585313366 3.55765968054 1.17214820936 0.0243298840418 0.0217609949477 0.0 0.0217609949477 0.0266513163502 0.0307745929743 0.0 0.0108807121732 0.0266519006948 0.264256357791 14.4960954356 10.4168212393 14.4064847941 33.3040121792 0.0 12148.4523984 9888.59699975 9614.90698529 8189.94885234 1733.83822581 519.389156902 2205.2498037 1935.30571326 37773.138997 9292.75272596 46202.5367 35507.1831645 26359.1742227 7182.64253249 31886.6151889 25572.2450549 13082.1558672 4698.86807537 16006.9805653 12422.5183735 34.6255183528 0.0 113.597558837 73.3765127852 15392.4757116 8612.39521233 14956.5262256 13082.1574583 41.8204444521 0.526626469182 52.0787753804 31.8794180363 455.887217988 113.959637255 783.207398897 538.439210545 2013.12539264 147.786584179 4040.33784191 2852.57939736 182664.5985030.194944519233
zeros 0 75 0 72301 66075 64330 75725 75672 75982 75975 75791 66226 64480 69336 67372 64388 69325 67360 64271 75924 75149 75734 76020 76020 3191 25561 76012 76018 73524 73846 70887 72564 72048 72756 72867 75247 75260 76018 76018 72154 74222 75617 75883 75910 76018 76018 75701 75744 75815 72799 73140 74011 74147 73925 74147 74223 74223 76020 76020 76020 76020 76012 76018 343 20310 75695 75741 75928 75938 75938 75963 75972 76018 76018 70524 71059 71059 9065 75152 75737 9177 76020 75737 75877 75891 76020 76020 75149 75734 19528 3191 25561 76012 76018 73524 73846 70887 72564 72048 72756 72867 75247 75260 76018 76018 72154 74222 75617 75883 75910 76018 76018 75744 75815 72799 73140 74147 74147 74223 74223 75918 76013 75791 75772 67679 75044 64388 62355 67609 75037 64271 62244 76020 76020 76020 76020 76012 76018 343 20310 75695 75741 75938 75938 75963 75972 76018 76018 19528 72452 71059 71059 9065 75152 75737 9177 76020 75737 436 21908 75877 75891 76020 76020 75734 25561 76018 73846 72564 72867 75260 76018 72154 75617 75910 76018 75815 73140 74147 74223 76020 76020 76018 20310 75741 75938 75972 76018 71059 75737 76020 21786 75891 76020 411 76018 76018 73948 75960 75996 75918 75982 75999 76019 76014 76016 76009 76019 75975 73970 75961 76001 75923 75982 75999 76019 76014 76016 76009 76019 75975 76020 76018 76020 76018 74314 75619 75998 75976 75997 76013 76017 75815 75988 75936 76020 75982 76019 76000 76020 76019 70958 66190 76018 76016 76020 76016 76014 76015 76020 76019 76017 75976 76017 75815 69872 69014 68656 69489 70958 66190 75152 76020 76020 74314 75619 75998 75976 75997 76013 76017 75815 75988 75936 72301 60541 61880 67953 49954 64766 51408 20546 73805 72537 72760 75477 76018 75897 76015 75972 10164 75877 66075 64330 75725 75672 75982 75975 66226 64480 69336 67372 69325 67360 76020 75982 76019 76000 76020 76019 75924 70958 66190 74384 76018 76016 76020 76016 76014 76015 76020 76019 76017 75976 48881 50663 54392 38356 76020 23241 29637 24664 24664 74628 75536 73821 73821 73024 74734 72544 72544 73047 74657 72836 72836 75532 75722 75483 75483 76018 76020 76018 76018 75930 76003 75902 75902 76016 76019 76017 76017 75977 75996 75972 75972 75921 75988 75879 75879 0 73012
missing0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1.0 2.0 23.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39205.17 0.0
1 3.0 2.0 34.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 3.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 0.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 88.89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 122.22 300.0 240.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49278.03 0.0
2 4.0 2.0 23.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.18 3.0 2.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 67333.77 0.0
3 8.0 2.0 37.0 0.0 195.0 195.0 0.0 0.0 0.0 0.0 0.0 195.0 195.0 0.0 0.0 195.0 0.0 0.0 195.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 9.0 0.0 0.0 9.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 6.0 6.0 6.0 3.0 0.0 0.0 3.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 70.62 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.62 0.0 0.0 0.0 0.0 34.95 0.0 0.0 70.62 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 15.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 9.0 9.0 0.0 0.0 0.0 0.0 9.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.0 3.0 18.0 48.0 0.0 186.09 0.0 91.56 138.84 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 64007.97 0.0
4 10.0 2.0 39.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 6.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 135003.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 135003.0 0.0 0.0 0.0 0.0 0.0 135003.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 135003.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 135003.0 270003.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 6.0 9.0 3.0 0.0 3.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 6.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.3 40501.08 13501.47 0.0 0.0 0.0 0.0 0.0 0.0 85501.89 85501.89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 117310.9790160.0
5 13.0 2.0 23.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 87975.75 0.0
6 14.0 2.0 27.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.42 3.0 2.13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94956.66 0.0
7 18.0 2.0 26.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.88 0.0 3.0 2.94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 251638.95 0.0
8 20.0 2.0 45.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 101962.02 0.0
9 23.0 2.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.79 0.0 3.0 2.91 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 356463.06 0.0
In [4]:
from h2o.estimators.gbm import H2OGradientBoostingEstimator
In [5]:
df["TARGET"]= df["TARGET"].asfactor()

Split 0.7 Train - 0.1 Validation - 0.2 Test

In [66]:
# Split final H2O data table into train test and validation sets
ratios = [0.9,0.05]
frs = df.split_frame(ratios,seed=12345)
train = frs[0]
train.frame_id = "Train"
valid = frs[2]
valid.frame_id = "Validation"
test = frs[1]
test.frame_id = "Test"
In [8]:
# Define Preditors
predictors = df.names[:]
response = "TARGET"
predictors.remove(response)

Gradient Boosting

In [57]:
from h2o.grid.grid_search import H2OGridSearch 

ntrees_opt = [15, 16, 17, 18] 
max_depth_opt = [3, 4] 
learn_rate_opt = [ 0.2]

hyper_parameters = {"ntrees": ntrees_opt, "max_depth":max_depth_opt,"learn_rate":learn_rate_opt}

model_gbm = H2OGridSearch(H2OGradientBoostingEstimator(distribution="multinomial"), hyper_params=hyper_parameters)

model_gbm.train(x               =predictors,
               y               ="TARGET",
               training_frame  =train,
               validation_frame=valid
               )
gbm Grid Build Progress: [##################################################] 100%
In [58]:
print model_gbm.sort_by("auc", increasing=False)
Grid Search Results for H2OGradientBoostingEstimator: 
Model Id Hyperparameters: [learn_rate, ntrees, max_depth] auc
Grid_GBM_Train_model_python_1460226203968_5639_model_7 [0.2, 18, 4] 0.8501685
Grid_GBM_Train_model_python_1460226203968_5639_model_6 [0.2, 17, 4] 0.8493567
Grid_GBM_Train_model_python_1460226203968_5639_model_5 [0.2, 16, 4] 0.8488648
Grid_GBM_Train_model_python_1460226203968_5639_model_4 [0.2, 15, 4] 0.8478010
Grid_GBM_Train_model_python_1460226203968_5639_model_3 [0.2, 18, 3] 0.8381908
Grid_GBM_Train_model_python_1460226203968_5639_model_2 [0.2, 17, 3] 0.8368843
Grid_GBM_Train_model_python_1460226203968_5639_model_1 [0.2, 16, 3] 0.8357914
Grid_GBM_Train_model_python_1460226203968_5639_model_0 [0.2, 15, 3] 0.8351749

In [67]:
#Simple GBM model - Predict Arrest
model_gbm = H2OGradientBoostingEstimator(ntrees         =18,
                                        max_depth      =4,
                                        learn_rate     =0.2, 
                                        #nfolds         =2,
                                        distribution   ="multinomial")

model_gbm.train(x               =predictors,
               y               ="TARGET",
               training_frame  =train,
               validation_frame=valid
               )
gbm Model Build Progress: [##################################################] 100%

AUC : Train & Validation

In [70]:
#AUC Train: 0.846304  0.850429711071
#AUC Validation: 0.843999    0.845719714677
print("Train: " + str(model_gbm.auc(train=True)))
print("Validation: " + str(model_gbm.auc(valid=True)))
#model_gbm.plot(metric="AUC")
Train: 0.848617115678
Validation: 0.845816831856
In [69]:
#AUC : 0.851175 0.852239641273
test_performance = model_gbm.model_performance(test)
test_performance
ModelMetricsBinomial: gbm
** Reported on test data. **

MSE: 0.0350234706464
R^2: 0.0901716380185
LogLoss: 0.134912012086
AUC: 0.852239641273
Gini: 0.704479282546

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.137471941587: 
0 1 Error Rate
0 3469.0 265.0 0.071 (265.0/3734.0)
1 86.0 70.0 0.5513 (86.0/156.0)
Total 3555.0 335.0 0.0902 (351.0/3890.0)
Maximum Metrics: Maximum metrics at their respective thresholds

metric threshold value idx
max f1 0.1374719 0.2851324 99.0
max f2 0.0692502 0.4187192 176.0
max f0point5 0.2257219 0.2670940 32.0
max accuracy 0.3245295 0.9598972 3.0
max precision 0.3245295 0.5 3.0
max recall 0.0068725 1.0 394.0
max specificity 0.5264727 0.9997322 0.0
max absolute_MCC 0.0692502 0.2847757 176.0
max min_per_class_accuracy 0.0394624 0.7897697 251.0
Gains/Lift Table: Avg response rate:  4,01 %

group cumulative_data_fraction lower_threshold lift cumulative_lift response_rate cumulative_response_rate capture_rate cumulative_capture_rate gain cumulative_gain
1 0.0100257 0.2378949 5.7544379 5.7544379 0.2307692 0.2307692 0.0576923 0.0576923 475.4437870 475.4437870
2 0.0200514 0.2228933 10.2301118 7.9922748 0.4102564 0.3205128 0.1025641 0.1602564 923.0111769 699.2274819
3 0.0318766 0.2117084 3.7945931 6.4350703 0.1521739 0.2580645 0.0448718 0.2051282 279.4593088 543.5070306
4 0.0401028 0.1946925 3.8962340 5.9142834 0.15625 0.2371795 0.0320513 0.2371795 289.6233974 491.4283366
5 0.0501285 0.1720460 2.5575279 5.2429323 0.1025641 0.2102564 0.0256410 0.2628205 155.7527942 424.2932281
6 0.1 0.1026853 4.4987444 4.8717949 0.1804124 0.1953728 0.2243590 0.4871795 349.8744383 387.1794872
7 0.1501285 0.0700410 3.0690335 4.2698455 0.1230769 0.1712329 0.1538462 0.6410256 206.9033531 326.9845451
8 0.2 0.0484875 1.7994978 3.6538462 0.0721649 0.1465296 0.0897436 0.7307692 79.9497753 265.3846154
9 0.3002571 0.0315654 1.0230112 2.7753995 0.0410256 0.1113014 0.1025641 0.8333333 2.3011177 177.5399543
10 0.4002571 0.0228962 0.7692308 2.2741795 0.0308483 0.0912010 0.0769231 0.9102564 -23.0769231 127.4179471
11 0.5015424 0.0185304 0.3797345 1.8916006 0.0152284 0.0758585 0.0384615 0.9487179 -62.0265521 89.1600626
12 0.6033419 0.0155407 0.1259389 1.5936875 0.0050505 0.0639114 0.0128205 0.9615385 -87.4061124 59.3687523
13 0.7015424 0.0105173 0.1305544 1.3888811 0.0052356 0.0556981 0.0128205 0.9743590 -86.9445563 38.8881059
14 0.8015424 0.0090400 0.1923077 1.2395972 0.0077121 0.0497114 0.0192308 0.9935897 -80.7692308 23.9597211
15 0.9231362 0.0068751 0.0527186 1.0832637 0.0021142 0.0434419 0.0064103 1.0 -94.7281401 8.3263715
16 1.0 0.0058277 0.0 1.0 0.0 0.0401028 0.0 1.0 -100.0 0.0

Out[69]:

Random Forest

In [111]:
from h2o.estimators.random_forest import H2ORandomForestEstimator

ntrees=[50,100,200]
stopping_rounds=[1,2]
sample_rate = [0.1, 0.2]
seed=1000000

hyper_parameters = {"ntrees": ntrees, "stopping_rounds":stopping_rounds,"sample_rate":sample_rate,
                    "seed":seed}

model_random_forest = H2OGridSearch(H2ORandomForestEstimator(score_each_iteration=True), hyper_params=hyper_parameters)

model_random_forest.train(x               =predictors,
               y               ="TARGET",
               training_frame  =train,
               validation_frame=valid
               )
drf Grid Build Progress: [##################################################] 100%
In [112]:
print model_random_forest.sort_by("auc", increasing=False)
Grid Search Results for H2ORandomForestEstimator: 
Model Id Hyperparameters: [ntrees, sample_rate, seed, stopping_rounds] auc
Grid_DRF_Train_model_python_1460226203968_1408_model_9 [200, 0.1, 1000000, 2] 0.7823061
Grid_DRF_Train_model_python_1460226203968_1408_model_1 [50, 0.1, 1000000, 2] 0.7823061
Grid_DRF_Train_model_python_1460226203968_1408_model_5 [100, 0.1, 1000000, 2] 0.7823061
Grid_DRF_Train_model_python_1460226203968_1408_model_3 [50, 0.2, 1000000, 2] 0.7820207
Grid_DRF_Train_model_python_1460226203968_1408_model_7 [100, 0.2, 1000000, 2] 0.7820207
Grid_DRF_Train_model_python_1460226203968_1408_model_11 [200, 0.2, 1000000, 2] 0.7820207
Grid_DRF_Train_model_python_1460226203968_1408_model_2 [50, 0.2, 1000000, 1] 0.7788367
Grid_DRF_Train_model_python_1460226203968_1408_model_6 [100, 0.2, 1000000, 1] 0.7788367
Grid_DRF_Train_model_python_1460226203968_1408_model_10 [200, 0.2, 1000000, 1] 0.7788367
Grid_DRF_Train_model_python_1460226203968_1408_model_8 [200, 0.1, 1000000, 1] 0.7765093
Grid_DRF_Train_model_python_1460226203968_1408_model_0 [50, 0.1, 1000000, 1] 0.7765093
Grid_DRF_Train_model_python_1460226203968_1408_model_4 [100, 0.1, 1000000, 1] 0.7765093

In [113]:
print(model_random_forest.auc(train=True))
print("----Validation: " + str(model_random_forest.auc(valid=True)))
#model_gbm.plot(metric="AUC")
{u'Grid_DRF_Train_model_python_1460226203968_1408_model_10': 0.7788366862330695, u'Grid_DRF_Train_model_python_1460226203968_1408_model_11': 0.7820207477348616, u'Grid_DRF_Train_model_python_1460226203968_1408_model_6': 0.7788366862330695, u'Grid_DRF_Train_model_python_1460226203968_1408_model_7': 0.7820207477348616, u'Grid_DRF_Train_model_python_1460226203968_1408_model_4': 0.7765093227261314, u'Grid_DRF_Train_model_python_1460226203968_1408_model_5': 0.7823060793369291, u'Grid_DRF_Train_model_python_1460226203968_1408_model_2': 0.7788366862330695, u'Grid_DRF_Train_model_python_1460226203968_1408_model_3': 0.7820207477348616, u'Grid_DRF_Train_model_python_1460226203968_1408_model_0': 0.7765093227261314, u'Grid_DRF_Train_model_python_1460226203968_1408_model_1': 0.7823060793369291, u'Grid_DRF_Train_model_python_1460226203968_1408_model_8': 0.7765093227261314, u'Grid_DRF_Train_model_python_1460226203968_1408_model_9': 0.7823060793369291}
----Validation: {u'Grid_DRF_Train_model_python_1460226203968_1408_model_10': 0.7811812877646773, u'Grid_DRF_Train_model_python_1460226203968_1408_model_11': 0.7823395488149033, u'Grid_DRF_Train_model_python_1460226203968_1408_model_6': 0.7811812877646773, u'Grid_DRF_Train_model_python_1460226203968_1408_model_7': 0.7823395488149033, u'Grid_DRF_Train_model_python_1460226203968_1408_model_4': 0.7753144531588151, u'Grid_DRF_Train_model_python_1460226203968_1408_model_5': 0.7763287972437195, u'Grid_DRF_Train_model_python_1460226203968_1408_model_2': 0.7811812877646773, u'Grid_DRF_Train_model_python_1460226203968_1408_model_3': 0.7823395488149033, u'Grid_DRF_Train_model_python_1460226203968_1408_model_0': 0.7753144531588151, u'Grid_DRF_Train_model_python_1460226203968_1408_model_1': 0.7763287972437195, u'Grid_DRF_Train_model_python_1460226203968_1408_model_8': 0.7753144531588151, u'Grid_DRF_Train_model_python_1460226203968_1408_model_9': 0.7763287972437195}
In [122]:
model_random_forest = H2ORandomForestEstimator(ntrees=200,
                                        stopping_rounds      =2,
                                        sample_rate     =0.1, 
                                        seed=1000000
                                            )

model_random_forest.train(x               =predictors,
               y               ="TARGET",
               training_frame  =train,
               validation_frame=valid
               )
drf Model Build Progress: [##################################################] 100%
In [123]:
test_performance = model_random_forest.model_performance(test)
test_performance
ModelMetricsBinomial: drf
** Reported on test data. **

MSE: 0.0350591177046
R^2: 0.0709754860633
LogLoss: 0.140125855625
AUC: 0.80658346729
Gini: 0.613166934581

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.131365816061: 
0 1 Error Rate
0 13524.0 1004.0 0.0691 (1004.0/14528.0)
1 359.0 235.0 0.6044 (359.0/594.0)
Total 13883.0 1239.0 0.0901 (1363.0/15122.0)
Maximum Metrics: Maximum metrics at their respective thresholds

metric threshold value idx
max f1 0.1313658 0.2564103 108.0
max f2 0.0695485 0.3730273 192.0
max f0point5 0.1546340 0.2381746 71.0
max accuracy 0.3056535 0.9608517 1.0
max precision 0.4472917 1.0 0.0
max recall 0.0042575 1.0 388.0
max specificity 0.4472917 1.0 0.0
max absolute_MCC 0.0950517 0.2473182 155.0
max min_per_class_accuracy 0.0449187 0.7239057 248.0
Gains/Lift Table: Avg response rate:  3,93 %

group cumulative_data_fraction lower_threshold lift cumulative_lift response_rate cumulative_response_rate capture_rate cumulative_capture_rate gain cumulative_gain
1 0.0100516 0.1787496 8.0393408 8.0393408 0.3157895 0.3157895 0.0808081 0.0808081 703.9340776 703.9340776
2 0.0200370 0.1672940 5.5636497 6.8055806 0.2185430 0.2673267 0.0555556 0.1363636 456.3649742 580.5580558
3 0.0300225 0.1600323 4.2148862 5.9439179 0.1655629 0.2334802 0.0420875 0.1784512 321.4886169 494.3917887
4 0.0400079 0.1539491 6.2380315 6.0173248 0.2450331 0.2363636 0.0622896 0.2407407 523.8031529 501.7324763
5 0.0500595 0.1493541 4.5221292 5.7171006 0.1776316 0.2245707 0.0454545 0.2861953 352.2129187 471.7100552
6 0.1000529 0.1201862 3.3337743 4.5262250 0.1309524 0.1777925 0.1666667 0.4528620 233.3774250 352.6225017
7 0.1500463 0.0770777 2.4582376 3.8371997 0.0965608 0.1507272 0.1228956 0.5757576 145.8237579 283.7199674
8 0.2000397 0.0585241 1.3806540 3.2232663 0.0542328 0.1266116 0.0690236 0.6447811 38.0653983 222.3266272
9 0.3000265 0.0438331 0.8418622 2.4296399 0.0330688 0.0954375 0.0841751 0.7289562 -15.8137816 142.9639871
10 0.4000132 0.0328529 0.6061408 1.9738405 0.0238095 0.0775335 0.0606061 0.7895623 -39.3859227 97.3840460
11 0.5 0.0237782 0.8923739 1.7575758 0.0350529 0.0690385 0.0892256 0.8787879 -10.7626084 75.7575758
12 0.5999868 0.0180759 0.6734897 1.5769147 0.0264550 0.0619420 0.0673401 0.9461279 -32.6510252 57.6914670
13 0.6999735 0.0113525 0.2020469 1.3805235 0.0079365 0.0542277 0.0202020 0.9663300 -79.7953076 38.0523548
14 0.7999603 0.0080068 0.1852097 1.2311217 0.0072751 0.0483591 0.0185185 0.9848485 -81.4790319 23.1121666
15 0.8999471 0.0063237 0.0505117 1.0999524 0.0019841 0.0432067 0.0050505 0.9898990 -94.9488269 9.9952423
16 1.0 0.0001298 0.1009567 1.0 0.0039656 0.0392805 0.0101010 1.0 -89.9043308 0.0

Out[123]:

In [124]:
predictions_rf = model_random_forest.predict(df_test)
drf prediction Progress: [##################################################] 100%
In [71]:
#import Test Dataset
df_test = h2o.import_file("/Users/comalada/Documents/h2o_ML/Kaggle-Santander_Customer_Satisfaction/test.csv")
Parse Progress: [##################################################] 100%

Predict with the model build on the test Dataset

In [72]:
predictions = model_gbm.predict(df_test)
gbm prediction Progress: [##################################################] 100%

Construct the Dataset to send to Kaggle

In [73]:
import pandas as pd
In [74]:
#Parse in panda dataframe 
df_prediction = predictions["p1"].as_data_frame(use_pandas=True)
df_id = df_test["ID"].as_data_frame(use_pandas=True)
In [75]:
merge = pd.concat([df_id,df_prediction],axis=1)
In [76]:
print(df_prediction.count())
print(df_id.count())  
p1    75818
dtype: int64
ID    75818
dtype: int64
In [77]:
merge = merge.rename(columns={"p1": "TARGET"})
In [78]:
merge.to_csv("result.csv",sep=",",index=False)
In [41]:
df_test.summary()
ID var3 var15 imp_ent_var16_ult1 imp_op_var39_comer_ult1 imp_op_var39_comer_ult3 imp_op_var40_comer_ult1 imp_op_var40_comer_ult3 imp_op_var40_efect_ult1 imp_op_var40_efect_ult3 imp_op_var40_ult1 imp_op_var41_comer_ult1 imp_op_var41_comer_ult3 imp_op_var41_efect_ult1 imp_op_var41_efect_ult3 imp_op_var41_ult1 imp_op_var39_efect_ult1 imp_op_var39_efect_ult3 imp_op_var39_ult1 imp_sal_var16_ult1 ind_var1_0 ind_var1 ind_var2_0 ind_var2 ind_var5_0 ind_var5 ind_var6_0 ind_var6 ind_var8_0 ind_var8 ind_var12_0 ind_var12 ind_var13_0 ind_var13_corto_0 ind_var13_corto ind_var13_largo_0 ind_var13_largo ind_var13_medio_0 ind_var13_medio ind_var13 ind_var14_0 ind_var14 ind_var17_0 ind_var17 ind_var18_0 ind_var18 ind_var19 ind_var20_0 ind_var20 ind_var24_0 ind_var24 ind_var25_cte ind_var26_0 ind_var26_cte ind_var26 ind_var25_0 ind_var25 ind_var27_0 ind_var28_0 ind_var28 ind_var27 ind_var29_0 ind_var29 ind_var30_0 ind_var30 ind_var31_0 ind_var31 ind_var32_cte ind_var32_0 ind_var32 ind_var33_0 ind_var33 ind_var34_0 ind_var34 ind_var37_cte ind_var37_0 ind_var37 ind_var39_0 ind_var40_0 ind_var40 ind_var41_0 ind_var41 ind_var39 ind_var44_0 ind_var44 ind_var46_0 ind_var46 num_var1_0 num_var1 num_var4 num_var5_0 num_var5 num_var6_0 num_var6 num_var8_0 num_var8 num_var12_0 num_var12 num_var13_0 num_var13_corto_0 num_var13_corto num_var13_largo_0 num_var13_largo num_var13_medio_0 num_var13_medio num_var13 num_var14_0 num_var14 num_var17_0 num_var17 num_var18_0 num_var18 num_var20_0 num_var20 num_var24_0 num_var24 num_var26_0 num_var26 num_var25_0 num_var25 num_op_var40_hace2 num_op_var40_hace3 num_op_var40_ult1 num_op_var40_ult3 num_op_var41_hace2 num_op_var41_hace3 num_op_var41_ult1 num_op_var41_ult3 num_op_var39_hace2 num_op_var39_hace3 num_op_var39_ult1 num_op_var39_ult3 num_var27_0 num_var28_0 num_var28 num_var27 num_var29_0 num_var29 num_var30_0 num_var30 num_var31_0 num_var31 num_var32_0 num_var32 num_var33_0 num_var33 num_var34_0 num_var34 num_var35 num_var37_med_ult2 num_var37_0 num_var37 num_var39_0 num_var40_0 num_var40 num_var41_0 num_var41 num_var39 num_var42_0 num_var42 num_var44_0 num_var44 num_var46_0 num_var46 saldo_var1 saldo_var5 saldo_var6 saldo_var8 saldo_var12 saldo_var13_corto saldo_var13_largo saldo_var13_medio saldo_var13 saldo_var14 saldo_var17 saldo_var18 saldo_var20 saldo_var24 saldo_var26 saldo_var25 saldo_var28 saldo_var27 saldo_var29 saldo_var30 saldo_var31 saldo_var32 saldo_var33 saldo_var34 saldo_var37 saldo_var40 saldo_var41 saldo_var42 saldo_var44 saldo_var46 var36 delta_imp_amort_var18_1y3 delta_imp_amort_var34_1y3 delta_imp_aport_var13_1y3 delta_imp_aport_var17_1y3 delta_imp_aport_var33_1y3 delta_imp_compra_var44_1y3 delta_imp_reemb_var13_1y3 delta_imp_reemb_var17_1y3 delta_imp_reemb_var33_1y3 delta_imp_trasp_var17_in_1y3 delta_imp_trasp_var17_out_1y3 delta_imp_trasp_var33_in_1y3 delta_imp_trasp_var33_out_1y3 delta_imp_venta_var44_1y3 delta_num_aport_var13_1y3 delta_num_aport_var17_1y3 delta_num_aport_var33_1y3 delta_num_compra_var44_1y3 delta_num_reemb_var13_1y3 delta_num_reemb_var17_1y3 delta_num_reemb_var33_1y3 delta_num_trasp_var17_in_1y3 delta_num_trasp_var17_out_1y3 delta_num_trasp_var33_in_1y3 delta_num_trasp_var33_out_1y3 delta_num_venta_var44_1y3 imp_amort_var18_hace3 imp_amort_var18_ult1 imp_amort_var34_hace3 imp_amort_var34_ult1 imp_aport_var13_hace3 imp_aport_var13_ult1 imp_aport_var17_hace3 imp_aport_var17_ult1 imp_aport_var33_hace3 imp_aport_var33_ult1 imp_var7_emit_ult1 imp_var7_recib_ult1 imp_compra_var44_hace3 imp_compra_var44_ult1 imp_reemb_var13_hace3 imp_reemb_var13_ult1 imp_reemb_var17_hace3 imp_reemb_var17_ult1 imp_reemb_var33_hace3 imp_reemb_var33_ult1 imp_var43_emit_ult1 imp_trans_var37_ult1 imp_trasp_var17_in_hace3 imp_trasp_var17_in_ult1 imp_trasp_var17_out_hace3 imp_trasp_var17_out_ult1 imp_trasp_var33_in_hace3 imp_trasp_var33_in_ult1 imp_trasp_var33_out_hace3 imp_trasp_var33_out_ult1 imp_venta_var44_hace3 imp_venta_var44_ult1 ind_var7_emit_ult1 ind_var7_recib_ult1 ind_var10_ult1 ind_var10cte_ult1 ind_var9_cte_ult1 ind_var9_ult1 ind_var43_emit_ult1 ind_var43_recib_ult1 var21 num_var2_0_ult1 num_var2_ult1 num_aport_var13_hace3 num_aport_var13_ult1 num_aport_var17_hace3 num_aport_var17_ult1 num_aport_var33_hace3 num_aport_var33_ult1 num_var7_emit_ult1 num_var7_recib_ult1 num_compra_var44_hace3 num_compra_var44_ult1 num_ent_var16_ult1 num_var22_hace2 num_var22_hace3 num_var22_ult1 num_var22_ult3 num_med_var22_ult3 num_med_var45_ult3 num_meses_var5_ult3 num_meses_var8_ult3 num_meses_var12_ult3 num_meses_var13_corto_ult3 num_meses_var13_largo_ult3 num_meses_var13_medio_ult3 num_meses_var17_ult3 num_meses_var29_ult3 num_meses_var33_ult3 num_meses_var39_vig_ult3 num_meses_var44_ult3 num_op_var39_comer_ult1 num_op_var39_comer_ult3 num_op_var40_comer_ult1 num_op_var40_comer_ult3 num_op_var40_efect_ult1 num_op_var40_efect_ult3 num_op_var41_comer_ult1 num_op_var41_comer_ult3 num_op_var41_efect_ult1 num_op_var41_efect_ult3 num_op_var39_efect_ult1 num_op_var39_efect_ult3 num_reemb_var13_hace3 num_reemb_var13_ult1 num_reemb_var17_hace3 num_reemb_var17_ult1 num_reemb_var33_hace3 num_reemb_var33_ult1 num_sal_var16_ult1 num_var43_emit_ult1 num_var43_recib_ult1 num_trasp_var11_ult1 num_trasp_var17_in_hace3 num_trasp_var17_in_ult1 num_trasp_var17_out_hace3 num_trasp_var17_out_ult1 num_trasp_var33_in_hace3 num_trasp_var33_in_ult1 num_trasp_var33_out_hace3 num_trasp_var33_out_ult1 num_venta_var44_hace3 num_venta_var44_ult1 num_var45_hace2 num_var45_hace3 num_var45_ult1 num_var45_ult3 saldo_var2_ult1 saldo_medio_var5_hace2 saldo_medio_var5_hace3 saldo_medio_var5_ult1 saldo_medio_var5_ult3 saldo_medio_var8_hace2 saldo_medio_var8_hace3 saldo_medio_var8_ult1 saldo_medio_var8_ult3 saldo_medio_var12_hace2 saldo_medio_var12_hace3 saldo_medio_var12_ult1 saldo_medio_var12_ult3 saldo_medio_var13_corto_hace2 saldo_medio_var13_corto_hace3 saldo_medio_var13_corto_ult1 saldo_medio_var13_corto_ult3 saldo_medio_var13_largo_hace2 saldo_medio_var13_largo_hace3 saldo_medio_var13_largo_ult1 saldo_medio_var13_largo_ult3 saldo_medio_var13_medio_hace2 saldo_medio_var13_medio_hace3 saldo_medio_var13_medio_ult1 saldo_medio_var13_medio_ult3 saldo_medio_var17_hace2 saldo_medio_var17_hace3 saldo_medio_var17_ult1 saldo_medio_var17_ult3 saldo_medio_var29_hace2 saldo_medio_var29_hace3 saldo_medio_var29_ult1 saldo_medio_var29_ult3 saldo_medio_var33_hace2 saldo_medio_var33_hace3 saldo_medio_var33_ult1 saldo_medio_var33_ult3 saldo_medio_var44_hace2 saldo_medio_var44_hace3 saldo_medio_var44_ult1 saldo_medio_var44_ult3 var38
type int int int real real real real real real real real real real real real real real real real real int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int real real real real real real real int real real real int real real real real int int real real real real real int real real int real real int int int int real real real real int int int int int int int real real real real real int int int int int int int real int real int real real real real real real real int real real real int int int real int int real real real real int int real real int real real real int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int real real real real real real real real real real real real real real real real real real real real real int real real real real real real real int real real real real real real real real real real real
mins 2.0 -999999.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1831.74 0.0 -3972.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -3972.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -3972.24 0.0 0.0 0.0 0.0 0.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 -1.0 0.0 -1.0 0.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 -1.0 0.0 -1.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1573.23 -32.85 -1605.15 -1036.08 -118.02 0.0 -3925.92 -869.31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.6 -0.6 0.0 0.0 0.0 0.0 1202.73
mean 75874.8305811-1579.9550106833.138832467283.1643287874 74.31289364 123.136448205 4.57851723865 7.66685536416 0.470645229365 0.672444274447 3.6358929278 69.7343764014 115.469592841 67.4399821942 110.967136036 137.214619879 67.9106274236 111.639580311 140.850512807 4.91715146799 0.01210794270490.003917275581 0.0 0.0 0.95700229497 0.6637473950789.23263604949e-052.63789601414e-050.03368593210060.02988736184020.06861167532780.04535862196310.05320636260520.0434857157931 0.0421535783059 0.0107626157377 0.0105779630167 6.59474003535e-05 6.59474003535e-050.0518742251180.02441372761090.005143897227570.001609116568620.001398084887491.31894800707e-051.31894800707e-050.003745812340080.003416075338310.002440053813080.04291856815 0.0380516500040.02797488722990.02589094937880.02928064575690.02589094937880.02476984357280.02476984357280.0 0.0 0.0 0.0 9.23263604949e-052.63789601414e-050.995304545095 0.7339681869740.004339338943260.003851328180640.001437653327710.001239811126650.001239811126650.0008705056846660.00076498984412.63789601414e-052.63789601414e-050.07072199213910.06427233638450.06427233638450.88254767997 0.01208156374480.003890896620860.8809253739220.0 0.003890896620860.002017990450820.001833337729830.0 0.0 0.03644253343530.01179139518321.08165607112 2.88984146245 1.998760188870.0002769790814857.91368804242e-050.1010973647420.08966208552060.2135904402650.1370650768950.1714500514390.131525495265 0.126579440238 0.0396871455327 0.0377087235221 0.000237410641273 0.00019784220106 0.1644860059620.07411168851720.01555039700340.009971246933450.007280592999023.95684402121e-053.95684402121e-050.01024822601490.007320161439240.1292305257330.1141945184520.09361892954180.09361892954180.08894985359680.08894985359680.0184388931388 0.000633095043393 0.0494605502651 0.0685325384473 1.62661900868 0.0923923078952 2.8837874911 4.60279880767 1.64505790182 0.0930254029386 2.93324804136 4.67133134612 0.0 0.0 0.0 0.0 0.0002769790814857.91368804242e-053.376256297982.390052494130.01895328286160.01531298636210.004669075945030.004669075945030.002848927695270.002453243293157.91368804242e-057.91368804242e-053.304597852750.25937112559 0.4087024189510.4087024189512.731805112240.03632382811470.01167268986262.704107204090.0 0.01167268986263.20480624654 2.220264317180.006133108232870.00557915006990.0 0.0 8.77917328339989.1008863330.297780210504136.03353755 6390.106894545060.71732029 1483.26098961 1.08813210583 6545.0664420158.142944683374.99352145933.165475216979.481082988216322.4828668778.639506317874.85911379880.0 0.0 0.29778021050414060.6055406202.5727659663.7803925189319.60737371070.83331135086737.68560012134.780386715560.0 7515.53909863107.9718707960.0 40.59665251 131894.800694 263789.601388 49724339.8397 4880107.62548 1318948.00673 10287794.4539 3561159.61873 1450842.80763 0.0 1055158.40547 0.0 1582737.60823 131894.800694 4088738.82154 49724339.8399 4880107.62542 1318948.00679 10287794.454 3561159.61873 1450842.80763 0.0 1055158.40547 0.0 1582737.60823 131894.800694 4088738.82155 0.0 0.0352479622253 0.0 0.0216581814345 2799.47703593 559.224566066 22.1657701337 23.7170919834 2.3450608035 0.583176290591 10.9011052784 155.859704556 49.1217094885 50.3812105305 0.0 37.0297290881 0.0 7.28074612889 0.0 0.0 992.796975916 1964.82267483 9.37580482207 7.44915138885 0.0 0.0 3.80586351526 1.7475876441 0.0 0.0741951779261 7.84888680788 31.8700246643 2.63789601414e-05 0.00247962225329 0.0812471972355 0.0918119707721 0.0969558679997 0.08654936822390.0680049592445 0.127647788124 32.58856735870.0 0.0 0.0747447835606 0.0178849349759 0.0016223060487 0.00344245429845 0.000989211005302 0.000870505684666 0.000158273760848 0.00846764620539 0.00300720145612 0.00767627740114 0.185575984595 1.29970455565 1.18665752196 0.557677596349 3.04403967396 0.640256931072 3.97555989343 1.98290643383 0.0553034899364 0.101163312142 0.0989870479306 0.0189664723417 0.000131894800707 0.00278298029492 7.91368804242e-05 0.00167506396898 1.597945079 0.0036007280593 2.21389379831 3.64330370097 0.0712231923818 0.133187369754 0.00383813870057 0.00498562346672 2.14267060592 3.51011633121 0.726793109816 1.22120077027 0.730631248516 1.22618639373 0.0 0.00106834788573 0.0 0.00102877944551 0.0 0.0 0.00447123374397 0.391490147458 0.817286132581 0.123651375663 0.000316547521697 0.000395684402121 0.0 0.0 0.000276979081485 0.000514389722757 0.0 3.95684402121e-05 0.000593526603181 0.00300720145612 5.41414967422 3.7761745232 4.29962541877 13.4899496162 0.0 1629.27607296 902.370806405 1056.86767773 1060.01450434 60.7643368329 9.36178137118 118.186621515 104.8057977 4359.74154185 704.8761583 6059.6468307 4745.3358287 3581.18466617 501.124805983 4909.47387494 3869.98682411 816.713431243 176.592697908 986.916914189 771.302025508 0.199158247382 0.0 1.21814212984 0.70865018861 36.3235768551 6.20474649819 57.5280677412 47.6885465193 0.138711124007 0.0 0.195139676594 0.160594845551 12.4385587855 1.32740760769 17.4699910312 12.6743494948 63.5978391675 11.4045048669 95.9730254029 70.5043192909 117386.348875
maxs 151837.0 238.0 105.0 240000.0 21093.96 47943.96 21093.96 47943.96 6600.0 6600.0 23799.96 14784.9 28927.89 67500.0 67950.0 72511.77 67500.0 67950.0 72511.77 66000.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 6.0 6.0 9.0 12.0 12.0 3.0 3.0 6.0 3.0 42.0 6.0 21.0 6.0 6.0 21.0 21.0 6.0 3.0 21.0 42.0 6.0 66.0 18.0 3.0 3.0 3.0 3.0 6.0 6.0 18.0 18.0 18.0 18.0 78.0 15.0 99.0 144.0 231.0 144.0 333.0 489.0 231.0 144.0 333.0 522.0 0.0 0.0 0.0 0.0 3.0 3.0 45.0 24.0 66.0 18.0 12.0 12.0 6.0 6.0 3.0 3.0 42.0 117.0 84.0 84.0 39.0 6.0 3.0 39.0 0.0 3.0 45.0 15.0 6.0 6.0 0.0 0.0 241299.27 600000.0 12627.0 375060.0 4202599.17 450000.0 1008000.0 36000.0 1008000.0 373312.11 557236.17 240000.0 156316.44 4202599.17 58264.68 58264.68 0.0 0.0 12627.0 4212656.07 557236.17 13522.89 162964.56 54000.0 90000.0 9966.0 0.0 4212656.07 498089.79 0.0 99.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 0.0 9999999999.0 0.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 9999999999.0 0.0 9999999999.0 0.0 9999999999.0 9999999999.0 9999999999.0 0.0 2672.43 0.0 994.47 1008000.0 450000.0 555824.4 339075.0 36497.67 24000.0 526500.0 850460.19 596253.0 458175.42 0.0 366060.0 0.0 211775.58 0.0 0.0 2880000.0 3000000.0 555824.4 199665.84 0.0 0.0 149252.1 35310.6 0.0 5625.33 438202.5 463917.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 18000.0 0.0 0.0 18.0 12.0 39.0 27.0 9.0 12.0 9.0 12.0 45.0 51.0 84.0 78.0 75.0 51.0 129.0 42.0 273.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 2.0 3.0 3.0 3.0 321.0 450.0 120.0 249.0 33.0 33.0 321.0 429.0 75.0 156.0 75.0 156.0 0.0 3.0 0.0 12.0 0.0 0.0 9.0 60.0 282.0 57.0 6.0 6.0 0.0 0.0 3.0 6.0 0.0 3.0 24.0 45.0 426.0 201.0 402.0 825.0 0.0 678060.0 405001.5 656187.09 482422.35 264702.87 95260.56 375060.0 216012.03 4500000.0 1202339.22 4356643.41 3002214.48 450000.0 283333.32 450000.0 450000.0 1008000.0 420000.03 1008000.0 740000.01 8129.04 0.0 36000.0 18600.0 556062.21 248772.75 556872.24 453902.4 6899.97 0.0 9160.32 8030.16 146605.32 40080.6 162355.8 138054.96 453893.4 217762.23 496198.08 354260.73 28894395.51
sigma 43882.370827339752.4733579 12.93199975911694.87388592 364.211245419 606.431562407 133.383325744 239.701416093 34.0286046774 42.3366684715 129.089127483 330.563912805 540.05460506 517.066405826 726.368848297 697.823262763 521.377495167 732.61944033 717.878305142 322.535540331 0.109368634417 0.06246584665350.0 0.0 0.2028532600980.4724296078380.0096082804902 0.00513601131346 0.180420673477 0.170277684576 0.252794296236 0.208090817925 0.224446229681 0.203949152817 0.200940754194 0.103183924463 0.102304485527 0.008120586251 0.008120586251 0.2217745219750.154330851297 0.0715367391353 0.0400817726907 0.0373650727367 0.00363173237873 0.00363173237873 0.0610887096843 0.0583476706521 0.0493369238543 0.2026748786690.19132225361 0.164901945323 0.158811022193 0.168593192135 0.158811022193 0.155423991183 0.155423991183 0.0 0.0 0.0 0.0 0.0096082804902 0.00513601131346 0.06836277677970.4418839925610.0657310129757 0.0619398583623 0.037889383942 0.0351893496306 0.0351893496306 0.0294916831699 0.02764805086930.00513601131346 0.00513601131346 0.256361578237 0.245239059704 0.245239059704 0.3219606183260.109250890105 0.0622559929986 0.3238784386810.0 0.0622559929986 0.0448769955349 0.0427785079141 0.0 0.0 0.329716860135 0.188342844465 0.9116031568320.6596608857571.431178743770.0288248414706 0.0154080339404 0.5415835081970.510833053729 0.8128250092720.6311488853090.7615293425880.619429316316 0.603682867597 0.425575854283 0.404010500778 0.0308155598033 0.024361758753 0.7338816732250.490496442921 0.217076552406 0.368376506948 0.228425091105 0.0108951971362 0.0108951971362 0.175043011956 0.148010771563 0.6114285787660.5742690376860.628550879154 0.628550879154 0.608707953596 0.608707953596 0.726407759512 0.0738925974373 1.24002288882 1.73362984875 7.48616334254 1.29955889298 11.0350693759 17.327210036 7.52945261638 1.30161301642 11.1878734905 17.5202538648 0.0 0.0 0.0 0.0 0.0288248414706 0.0154080339404 1.297698938771.645902903410.411716313318 0.285161603756 0.146100783638 0.146100783638 0.0998161407523 0.0911233425652 0.0154080339404 0.0154080339404 2.872312014491.62920794085 2.15334834897 2.15334834897 1.147580552030.328828695971 0.186767978996 1.109523497620.0 0.186767978996 0.8732978435771.501183682090.13724714719 0.131077729573 0.0 0.0 907.2030935789776.9336746158.3842412598 2404.4293623753046.726751832445.2894111 19371.5678193 156.087809805 37919.88637982523.702501643583.35280367871.615770895634.21245183652990.5303858701.40599503 685.6550927250.0 0.0 58.3842412598 65981.37292336278.29434774144.9305357351296.52126749198.926771831 529.070186665124.6969351280.0 53975.90699624942.926668440.0 47.387911463836317323.7836 51360113.1295 703404161.525 220857203.09 114838645.002 320583002.27 188677989.875 120442992.587 0.0 102716161.592 0.0 125797773.223 36317323.7836 202166291.69 703404161.525 220857203.09 114838645.002 320583002.27 188677989.875 120442992.587 0.0 102716161.592 0.0 125797773.223 36317323.7836 202166291.69 0.0 9.70555056088 0.0 4.30992281204 25261.4877365 10297.7918577 2486.05384134 1901.92999596 218.97792756 93.8896159253 2200.71620225 7413.35768882 3874.07943184 3175.58563981 0.0 2597.02465327 0.0 912.465064219 0.0 0.0 23156.9088916 31280.9142564 2063.90169168 1014.06674815 0.0 0.0 646.808667634 198.039408693 0.0 20.429693102 1629.45734046 3120.77009076 0.00513601131346 0.0497343578528 0.273216168506 0.288762242306 0.295899615556 0.281175421826 0.251756073863 0.333699414188 373.7368456910.0 0.0 0.539281224205 0.263590163013 0.157502721656 0.20525373077 0.0662659508531 0.0671573070481 0.0344535021771 0.180807628838 0.234672009136 0.31189857449 1.05666601604 3.43915399856 3.29537096731 2.06832357425 6.20663857648 1.83589865297 10.7345414385 1.29663286983 0.338418748573 0.484347197264 0.483448050528 0.222834997889 0.016241172502 0.0763889498304 0.0114843492469 0.0629863476345 0.715180887689 0.0862507340051 9.17694182814 15.1827585569 1.57689084397 3.11735263727 0.220847908693 0.26007319822 8.94156532357 14.6463940802 3.2426943184 5.24174203187 3.26330975808 5.26608941874 0.0 0.0566033969682 0.0 0.0937190012028 0.0 0.0 0.132022422694 2.01938646595 3.81552234363 1.15161480449 0.0377409914041 0.040764443333 0.0 0.0 0.0288248414706 0.0421940599433 0.0 0.0108951971362 0.0968374500938 0.22955786666 14.7492433137 9.72483692232 14.0920281269 32.7279692466 0.0 12024.6421396 7477.5780551 9787.58526923 8138.43001116 1697.25769555 510.104537216 2240.3333634 1815.88679147 45492.9112502 11844.4135897 51161.3066364 40002.3093559 25634.0572515 6497.14163214 31769.578595 25228.6555606 14027.2518185 4621.38043477 15452.2633515 12053.7724074 33.0924589648 0.0 169.602255199 93.5579842985 2566.71663568 959.584790218 2984.72314503 2488.14196155 26.9066810497 0.0 38.618025522 32.4416773698 958.651673053 170.449935439 1252.61878085 895.165515972 3754.6689535 1061.85819312 4658.87157542 3318.52778299 247938.372544
zeros 0 76 0 72215 65897 64099 75498 75452 75777 75771 75568 66064 64272 69220 67235 64304 69210 67227 64187 75720 74900 75521 75818 75818 3260 25494 75811 75816 73264 73552 70616 72379 71784 72521 72622 75002 75016 75813 75813 71885 73967 75428 75696 75712 75817 75817 75534 75559 75633 72564 72933 73697 73855 73598 73855 73940 73940 75818 75818 75818 75818 75811 75816 356 20170 75489 75526 75709 75724 75724 75752 75760 75816 75816 70456 70945 70945 8905 74902 75523 9028 75818 75523 75665 75679 75818 75818 74900 75521 19396 3260 25494 75811 75816 73264 73552 70616 72379 71784 72521 72622 75002 75016 75813 75813 71885 73967 75428 75696 75712 75817 75817 75559 75633 72564 72933 73855 73855 73940 73940 75715 75810 75568 75553 67419 74865 64304 62196 67343 74857 64187 62081 75818 75818 75818 75818 75811 75816 356 20170 75489 75526 75724 75724 75752 75760 75816 75816 19396 72279 70945 70945 8905 74902 75523 9028 75818 75523 459 21865 75665 75679 75818 75818 75521 25494 75816 73552 72379 72622 75016 75813 71885 75428 75712 75817 75633 72933 73855 73940 75818 75818 75816 20170 75526 75724 75760 75816 70945 75523 75818 21736 75679 75818 371 75817 75816 73762 75758 75790 75714 75791 75807 75818 75804 75818 75799 75817 75782 73779 75760 75792 75716 75791 75807 75818 75804 75818 75799 75817 75782 75818 75817 75818 75816 74137 75413 75794 75776 75798 75801 75816 75630 75792 75728 75818 75791 75818 75807 75818 75818 70662 66140 75812 75810 75818 75818 75811 75806 75818 75817 75813 75784 75816 75630 69658 68857 68467 69256 70662 66140 74902 75818 75818 74137 75413 75794 75776 75798 75801 75816 75630 75792 75728 72215 60439 61736 67821 49965 64609 51369 20375 73504 72360 72523 75230 75813 75705 75814 75758 9967 75665 65897 64099 75498 75452 75777 75771 66064 64272 69220 67235 69210 67227 75818 75791 75818 75807 75818 75818 75720 70662 66140 74155 75812 75810 75818 75818 75811 75806 75818 75817 75813 75784 48779 50860 54279 38263 75818 23017 29472 24625 24625 74405 75331 73525 73525 72842 74575 72367 72367 72836 74517 72596 72596 75293 75490 75233 75233 75813 75818 75813 75813 75737 75799 75707 75707 75815 75818 75815 75815 75771 75797 75759 75759 75720 75791 75670 75670 0
missing0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2.0 2.0 32.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 2.43 6.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 40532.1
1 5.0 2.0 35.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 6.0 0.0 3.0 2.55 3.0 2.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45486.72
2 6.0 2.0 23.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60.0 60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 6.0 0.0 9.0 0.0 90.0 57.0 51.45 66.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46993.95
3 7.0 2.0 24.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 187898.61
4 9.0 2.0 23.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 3.87 30.0 21.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73649.73
5 11.0 2.0 43.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53250.87
6 12.0 2.0 39.0 495.0 2334.42 4815.42 0.0 0.0 0.0 0.0 0.0 2334.42 4815.42 1560.0 2730.0 4494.51 1560.0 2730.0 4494.51 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 3.0 3.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 3.0 3.0 3.0 3.0 0.0 0.0 0.0 0.0 75.0 0.0 63.0 138.0 75.0 0.0 63.0 138.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 6.0 3.0 3.0 0.0 0.0 3.0 3.0 0.0 0.0 18.0 18.0 15.0 15.0 3.0 0.0 0.0 3.0 0.0 0.0 6.0 6.0 0.0 0.0 0.0 0.0 0.0 909.42 0.0 0.0 9017.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9017.25 1639.89 1639.89 0.0 0.0 0.0 9926.67 7600.95 0.0 7600.95 0.0 1134.87 0.0 0.0 9926.67 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3489.0 4590.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 6.0 21.0 6.0 33.0 9.0 45.0 3.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.0 36.0 102.0 0.0 0.0 0.0 0.0 36.0 102.0 12.0 24.0 12.0 24.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 6.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60.0 36.0 42.0 138.0 0.0 4134.87 754.89 2582.43 2490.72 0.0 0.0 0.0 0.0 6002.55 2129.07 8510.91 5547.51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7077.51 0.0 7599.0 7338.27 0.0 0.0 0.0 0.0 58316.64
7 15.0 2.0 29.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46898.49
8 16.0 2.0 53.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.0 3.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 6.0 3.0 0.0 0.0 0.0 0.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 6.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 189.99 0.0 300.0 245.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 110356.98
9 17.0 2.0 37.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 1153.86 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1153.86 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1153.86 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 9.0 3.0 3.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 9.0 0.0 700.32 0.0 1153.86 927.09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41366.49
In [ ]: